Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis.

Identifieur interne : 003248 ( Main/Exploration ); précédent : 003247; suivant : 003249

Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis.

Auteurs : Sateesh Kagale [Canada] ; Matthew G. Links ; Kevin Rozwadowski

Source :

RBID : pubmed:20097792

Descripteurs français

English descriptors

Abstract

The ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif is a transcriptional regulatory motif identified in members of the ethylene-responsive element binding factor, C2H2, and auxin/indole-3-acetic acid families of transcriptional regulators. Sequence comparison of the core EAR motif sites from these proteins revealed two distinct conservation patterns: LxLxL and DLNxxP. Proteins containing these motifs play key roles in diverse biological functions by negatively regulating genes involved in developmental, hormonal, and stress signaling pathways. Through a genome-wide bioinformatics analysis, we have identified the complete repertoire of the EAR repressome in Arabidopsis (Arabidopsis thaliana) comprising 219 proteins belonging to 21 different transcriptional regulator families. Approximately 72% of these proteins contain a LxLxL type of EAR motif, 22% contain a DLNxxP type of EAR motif, and the remaining 6% have a motif where LxLxL and DLNxxP are overlapping. Published in vitro and in planta investigations support approximately 40% of these proteins functioning as negative regulators of gene expression. Comparative sequence analysis of EAR motif sites and adjoining regions has identified additional preferred residues and potential posttranslational modification sites that may influence the functionality of the EAR motif. Homology searches against protein databases of poplar (Populus trichocarpa), grapevine (Vitis vinifera), rice (Oryza sativa), and sorghum (Sorghum bicolor) revealed that the EAR motif is conserved across these diverse plant species. This genome-wide analysis represents the most extensive survey of EAR motif-containing proteins in Arabidopsis to date and provides a resource enabling investigations into their biological roles and the mechanism of EAR motif-mediated transcriptional regulation.

DOI: 10.1104/pp.109.151704
PubMed: 20097792
PubMed Central: PMC2832246


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis.</title>
<author>
<name sortKey="Kagale, Sateesh" sort="Kagale, Sateesh" uniqKey="Kagale S" first="Sateesh" last="Kagale">Sateesh Kagale</name>
<affiliation wicri:level="1">
<nlm:affiliation>Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan S7N 0X2, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan S7N 0X2</wicri:regionArea>
<wicri:noRegion>Saskatchewan S7N 0X2</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Links, Matthew G" sort="Links, Matthew G" uniqKey="Links M" first="Matthew G" last="Links">Matthew G. Links</name>
</author>
<author>
<name sortKey="Rozwadowski, Kevin" sort="Rozwadowski, Kevin" uniqKey="Rozwadowski K" first="Kevin" last="Rozwadowski">Kevin Rozwadowski</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20097792</idno>
<idno type="pmid">20097792</idno>
<idno type="doi">10.1104/pp.109.151704</idno>
<idno type="pmc">PMC2832246</idno>
<idno type="wicri:Area/Main/Corpus">003321</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003321</idno>
<idno type="wicri:Area/Main/Curation">003321</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003321</idno>
<idno type="wicri:Area/Main/Exploration">003321</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis.</title>
<author>
<name sortKey="Kagale, Sateesh" sort="Kagale, Sateesh" uniqKey="Kagale S" first="Sateesh" last="Kagale">Sateesh Kagale</name>
<affiliation wicri:level="1">
<nlm:affiliation>Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan S7N 0X2, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan S7N 0X2</wicri:regionArea>
<wicri:noRegion>Saskatchewan S7N 0X2</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Links, Matthew G" sort="Links, Matthew G" uniqKey="Links M" first="Matthew G" last="Links">Matthew G. Links</name>
</author>
<author>
<name sortKey="Rozwadowski, Kevin" sort="Rozwadowski, Kevin" uniqKey="Rozwadowski K" first="Kevin" last="Rozwadowski">Kevin Rozwadowski</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Motifs (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (metabolism)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Computational Biology (MeSH)</term>
<term>Ethylenes (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Sequence Analysis, Protein (MeSH)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Analyse de séquence de protéine (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Biologie informatique (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Famille multigénique (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Motifs d'acides aminés (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Éthylènes (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Facteurs de transcription</term>
<term>Protéines d'Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Arabidopsis Proteins</term>
<term>Ethylenes</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arabidopsis</term>
<term>Facteurs de transcription</term>
<term>Protéines d'Arabidopsis</term>
<term>Éthylènes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Amino Acid Sequence</term>
<term>Computational Biology</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genome, Plant</term>
<term>Molecular Sequence Data</term>
<term>Multigene Family</term>
<term>Phosphorylation</term>
<term>Sequence Alignment</term>
<term>Sequence Analysis, Protein</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Analyse de séquence de protéine</term>
<term>Biologie informatique</term>
<term>Données de séquences moléculaires</term>
<term>Famille multigénique</term>
<term>Génome végétal</term>
<term>Motifs d'acides aminés</term>
<term>Phosphorylation</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif is a transcriptional regulatory motif identified in members of the ethylene-responsive element binding factor, C2H2, and auxin/indole-3-acetic acid families of transcriptional regulators. Sequence comparison of the core EAR motif sites from these proteins revealed two distinct conservation patterns: LxLxL and DLNxxP. Proteins containing these motifs play key roles in diverse biological functions by negatively regulating genes involved in developmental, hormonal, and stress signaling pathways. Through a genome-wide bioinformatics analysis, we have identified the complete repertoire of the EAR repressome in Arabidopsis (Arabidopsis thaliana) comprising 219 proteins belonging to 21 different transcriptional regulator families. Approximately 72% of these proteins contain a LxLxL type of EAR motif, 22% contain a DLNxxP type of EAR motif, and the remaining 6% have a motif where LxLxL and DLNxxP are overlapping. Published in vitro and in planta investigations support approximately 40% of these proteins functioning as negative regulators of gene expression. Comparative sequence analysis of EAR motif sites and adjoining regions has identified additional preferred residues and potential posttranslational modification sites that may influence the functionality of the EAR motif. Homology searches against protein databases of poplar (Populus trichocarpa), grapevine (Vitis vinifera), rice (Oryza sativa), and sorghum (Sorghum bicolor) revealed that the EAR motif is conserved across these diverse plant species. This genome-wide analysis represents the most extensive survey of EAR motif-containing proteins in Arabidopsis to date and provides a resource enabling investigations into their biological roles and the mechanism of EAR motif-mediated transcriptional regulation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20097792</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>06</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>152</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2010</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis.</ArticleTitle>
<Pagination>
<MedlinePgn>1109-34</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.109.151704</ELocationID>
<Abstract>
<AbstractText>The ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif is a transcriptional regulatory motif identified in members of the ethylene-responsive element binding factor, C2H2, and auxin/indole-3-acetic acid families of transcriptional regulators. Sequence comparison of the core EAR motif sites from these proteins revealed two distinct conservation patterns: LxLxL and DLNxxP. Proteins containing these motifs play key roles in diverse biological functions by negatively regulating genes involved in developmental, hormonal, and stress signaling pathways. Through a genome-wide bioinformatics analysis, we have identified the complete repertoire of the EAR repressome in Arabidopsis (Arabidopsis thaliana) comprising 219 proteins belonging to 21 different transcriptional regulator families. Approximately 72% of these proteins contain a LxLxL type of EAR motif, 22% contain a DLNxxP type of EAR motif, and the remaining 6% have a motif where LxLxL and DLNxxP are overlapping. Published in vitro and in planta investigations support approximately 40% of these proteins functioning as negative regulators of gene expression. Comparative sequence analysis of EAR motif sites and adjoining regions has identified additional preferred residues and potential posttranslational modification sites that may influence the functionality of the EAR motif. Homology searches against protein databases of poplar (Populus trichocarpa), grapevine (Vitis vinifera), rice (Oryza sativa), and sorghum (Sorghum bicolor) revealed that the EAR motif is conserved across these diverse plant species. This genome-wide analysis represents the most extensive survey of EAR motif-containing proteins in Arabidopsis to date and provides a resource enabling investigations into their biological roles and the mechanism of EAR motif-mediated transcriptional regulation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kagale</LastName>
<ForeName>Sateesh</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan S7N 0X2, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Links</LastName>
<ForeName>Matthew G</ForeName>
<Initials>MG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rozwadowski</LastName>
<ForeName>Kevin</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>01</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005030">Ethylenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Plant Signal Behav. 2010 Jun;5(6):691-4</RefSource>
<PMID Version="1">20505346</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005030" MajorTopicYN="N">Ethylenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020539" MajorTopicYN="N">Sequence Analysis, Protein</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>1</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>1</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20097792</ArticleId>
<ArticleId IdType="pii">pp.109.151704</ArticleId>
<ArticleId IdType="doi">10.1104/pp.109.151704</ArticleId>
<ArticleId IdType="pmc">PMC2832246</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Mol Biol. 2002 Jun-Jul;49(3-4):387-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12036262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2002 May;43(5):467-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12040093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Aug;12(8):1190-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12176927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2002 Sep;22(18):6321-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12192032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Dec;32(6):1011-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12492842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jan 1;31(1):229-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12519988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Jun;34(5):733-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12787253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jul;132(3):1475-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2003 Jul;44(7):735-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12881501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2003 Sep;20(9):1435-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12777513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Sep;13(9):2178-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12952885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Sep;15(9):2181-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12953119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Oct;15(10):2241-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14508003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2003 Jun 23;4:25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12820902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem Mol Biol. 2004 Jan 31;37(1):35-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14761301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Feb;16(2):533-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14742873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2004 Mar;131(5):1111-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 19;279(12):11736-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14722088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Jun;14(6):1188-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jun;16(6):1478-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15155890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(11):3435-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15226410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2004 Jul;271(14):2855-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15233782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2004 Aug;131(15):3737-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15240552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11494-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15277686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Aug 13;321(1):172-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15358231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Sep;136(1):2734-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15333755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1990 Jul 5;346(6279):35-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1973265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Jun 14;65(6):991-1002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1675158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1991 Aug;3(8):749-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1726485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1993 Jul;12(7):2723-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8334991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1994 Jun;14(6):4057-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8196644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Int Conf Intell Syst Mol Biol. 1995;3:21-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7584439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1995 Nov 9;378(6553):199-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7477325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 1996 Jun;12(6):229-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8928228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 May 2;89(3):325-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9150131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Nov;9(11):1963-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9401121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1998 Sep 1;26(17):3986-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9705509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Oct;118(2):341-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9765520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Oct;16(2):263-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9839469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Nov 15;19(22):6150-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11080161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2009 May;50(5):970-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19324928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2009;9:126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19493348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Aug;21(8):2527-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19717619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2009 Nov;122(6):633-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19618250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2009 Nov;6(11):786-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19876014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2010 Feb;37(2):809-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19597961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1998;14(9):755-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9918945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 Nov;41(5):577-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10645718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1999 Oct;126(19):4235-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10477292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Dec;40(6):979-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15584962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jan;41(2):195-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15634197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jan;137(1):149-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15618421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Jan 28;120(2):249-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Mar 11;307(5715):1634-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15681342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Apr;17(4):1279-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 May;37(5):501-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15806101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jun;138(2):675-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15894743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jul;43(1):153-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15960624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W262-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 12;102(28):9966-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Jul;58(4):585-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16021341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2384-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Oct;139(2):949-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16183832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Oct;139(2):847-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16183833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Dec 22;438(7071):1172-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16372013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Feb;45(3):369-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16412084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Mar;18(3):560-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16461579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Mar;11(3):109-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16473545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2006 May;133(9):1645-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16554365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jun;18(6):1373-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16679456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jun;18(6):1383-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16679458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jun 9;312(5779):1520-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16763149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2006 Aug;133(16):3159-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16854969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Dec;48(5):647-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17076807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Dec 11;580(28-29):6537-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17112521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Feb 9;282(6):3605-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17150959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Feb;143(2):902-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17158584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2543-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17267611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Mar 23;282(12):9260-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17259181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Apr;50(2):347-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17376166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2007 Jun;134(11):2073-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17507408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jun;50(6):1007-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17521410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Aug;27(15):5306-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17526732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007;8:246</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17645808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Aug 9;448(7154):666-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17637675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Sep;145(1):147-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17631527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Sep;12(9):419-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17698401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Sep;19(9):2719-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17873098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jan;53(1):172-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17999645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2008 Feb;279(2):183-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18030492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D1015-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17984086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Feb;146(2):566-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18156293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Mar 7;319(5868):1384-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18258861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2008 Apr;65(7-8):1150-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18193167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Aug;11(4):428-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18583180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Aug;55(3):526-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18419781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Sep;55(6):954-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18532977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Oct;11(5):486-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18653378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Oct;20(10):2631-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18849494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Mar;12(3):393-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10715325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Dec 15;290(5499):2105-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11118137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Feb;25(4):389-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11260495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2001 May;128(10):1771-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11311158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 May;26(4):385-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11439126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 May;46(2):143-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11442055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Aug;13(8):1959-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11487705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Stress Chaperones. 2001 Jul;6(3):177-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11599559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Dec;13(12):2809-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Mar;7(3):106-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11906833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2002 Apr;129(8):1957-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11934861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Mar 13;514(2-3):351-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11943180</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Links, Matthew G" sort="Links, Matthew G" uniqKey="Links M" first="Matthew G" last="Links">Matthew G. Links</name>
<name sortKey="Rozwadowski, Kevin" sort="Rozwadowski, Kevin" uniqKey="Rozwadowski K" first="Kevin" last="Rozwadowski">Kevin Rozwadowski</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Kagale, Sateesh" sort="Kagale, Sateesh" uniqKey="Kagale S" first="Sateesh" last="Kagale">Sateesh Kagale</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003248 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003248 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20097792
   |texte=   Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20097792" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020